
AE MegaMotor II Manual

1.6/2.5A Dual DC Motor, 1.6A/2.5A Microstepper Motor Controller

AE-MegaMotor II:

- Controls either two DC motors (up to 2.5A per channel) or 1 bipolar stepper motor (Up to 2.5A per phase). For single DC motor, refer to the AE-MDL-MegaBridgeDesign.
- Easy access to all signals. Two different implementations (DC or Stepper) documented on the back side.
- Selectable reference voltage to either external access, or internally derivable through a potentiometer.

Ease of Use Features:

- Input power wires and power outputs screwed into terminal block.
- Measures 2.5" by 2.5"
- Dual 16 pin header connector offers easy access to signals. Second header can work of as an access point to a second board or test stakes for in application monitoring.
- All possible combinations tackled by the use of potentiometers and jumpers.

Description:

The AE-MegaMotor II is the most flexible motor control module you will ever find. Measuring only 2.5" by 2.5" this module can either drive two DC motors or one bipolar steppers with or without internal microstepping.

The "secret" is a new family of drivers with different functionality but identical pinout, from Texas Instruments, which consists on drivers such as the DRV8802/12/13/14/24/25/41/43. The different flavors are:

DRV8812/13 Flavor: Dual H Bridge to control a bipolar stepper with external microstepping generation.

DRV8802/14 Flavor: Dual H Bridge to control two DC motors with PHASE/ENABLE interface.

DRV8824/25 Flavor: Dual H Bridge with internal indexer to microstep a bipolar stepper motor.

DRV8841/43 Flavor: Dual H Bridge to control two DC motors with IN1/IN2.

Other than the differences mentioned above, all of these devices offer the exact same features:

- 1. Current control engine to regulate current. Vital for stepper driving and torque control on DC motors.
- 2. Selectable slow, fast or mixed current decay modes.
- 3. Over Current Protection and fault signaling.
- 4. Identical pinout, allowing for completely different devices to be soldered into the very same board!

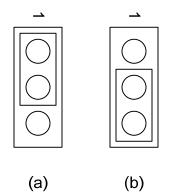
J2 and J3 pins	Dual H Bridge Flavors Internal Indexer Flavo			
	DRV8802/12/13/14/41/43	DRV8824/25		
1	VDD (3.3V)			
2	nRES	nRESET (input)		
3	nSLEEP (input)			
4	nFAULT (output)			
5	DECAY			
6	PHASE A (AIN2)	DIRECTION		
7	ENABLE A (AIN1)	nENABLE		
8	ENABLE B (BIN1	STEP		
9	PHASE B (BIN2) NC			
10	AI 0 MODE0			
11	AI 1 MODE1			
12	BI 0	MODE2		
13	BI 1 nHOME (output)			
14	A_VREF			
15	B_VREF			
16	GROUND			

Control Signals and AE-MegaMotor II Header pinout:

Jumper Configurations:

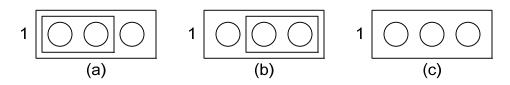
Jumpers will allow the configuration of the reference voltage selection. Depending on the device soldered into the AE-MegaMotor II module, jumpers must be configured accordingly. Per example, Dual DC variants will most likely require dual VREF analog inputs, while the microstepper will require a single VREF analog input.

Jumper settings will also control whether the VREF analog input is derived from the provided potentiometer or through the header connections.

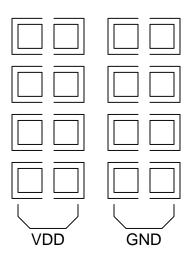


JP1 Position	Diagram	VREF B Source	Suggested Usage
JP1:1-2	(a)	Potentiometer R15	Pre configure VREF B and allowed stalling
			current on Dual DC Mode.
JP1:3-4	(b)	Headers J2 or J3	Drive VREF B through microcontroller DAC
			as with an external High Resolution
			Microstepping Engine.
JP1:5-6	(c)	VREFA	Tie to VREFA as when using a
			DRV8824/25.

Jumper JP1 (B_VREF Select):


Jumper JP2 (A_VREF Select):

JP2 Position	Diagram	VREF A Source	Suggested Usage
JP2:1-2	(a)	Potentiometer R20	Pre configure VREF A and allowed stalling
			current on Dual DC Mode or Sine Wave
			Peak on Bipolar Stepper Driving.
JP2:2-3	(b)	Headers J2 or J3	Drive VREF A through microcontroller DAC
			as with an external High Resolution
			Microstepping Engine.


Jumper JP3 (DECAY Select):

JP3 Position	Diagram	DECAY State	Suggested Usage
JP3:1-2	(a)	Fast Decay	On DC motor, issues coasting while stopping. Not best for PWM as average current is less than on slow decay. On Stepper motor, it causes highest current ripple.
JP3:2-3	(b)	Slow Decay	Only useful during sine wave quadrants 2 and 4. Issues braking while stopping. Optimal for PWM as average current is higher than on fast decay. On Stepper motor, it causes highest current ripple. Only useful during sine wave quadrants 2 and 4.
JP3:NONE	(c)	Mixed Decay or Headers J2 or J3	 When the DECAY pin is left open, the Mixed Decay mode is induced. Mixed Decay is only meaningful on stepper driving. Also, use this jumper setting when wanting to control DECAY externally with a microcontroller.

Pull Up / Pull Down Resistors

The signals AIx and BIx can be modulated to induce up to 8 degrees of microstepping without the use of an analog output. However, when driving DC motors, or when using High Resolution Microstepping, it is best to fix these signals one way or the other. A series of resistor places have been allocated for these signals to be hardwired either HI or LO, in which case no further control is required.

Note that these signals are also the MODEx bits on the internal indexer version. In some cases, it also makes sense to preselect their state.

Soldering a resistor on the VDD side, pre configures the signal to a HI state. Soldering a resistor on the GND side, pre configures the signal to a LO state. Any resistor value larger than 3.3K can be used. 4.7K and 10K are typical values which will offer equally good results. Smaller than 3.3K resistors will result in currents larger than 1 mA. Although this current is not too large, it is completely unnecessary.

IMPORTANT: Do note solder a resistor on both the VDD and GND side or the signal will be configured to an unknown state.

Control Signals Description:

Control Signal	Direction	Description	
	All Devices		
VDD	Power	3.3V power supply must be provided on this	
		power rail	
nRESET	Input	Clears the internal logic on the device. If an over	
		current protection has shut down the driver, a low	
		on this pin clears the fault and resumes operation.	
nSLEEP	Input	A LO level on this pin places the device on low	
		power mode.	
nFAULT	Output	Open Collector output which signals if a fault has	
		occurred (Thermal Shutdown, Over Current, etc.)	
VREF	Analog Input	Configures ITrip Max Current according to the	
		equation ITrip = VREF / (5 * RSENSE)	
DECAY	Input	Specifies Current Recirculation Scheme. A LO	
		configures for Slow Decay mode. An OPEN (or	
		NC) configures for Mixed Decay mode. A HI	
		configures for a Fast Decay mode	
H Bri	dge Control (DC	t motor or Stepper motor winding)	
PHASEx	Input	Selects direction of current flow on the H Bridge	
		driving an inductive load.	
ENABLEx	Input	A LO on this pin disables the H Bridge. A HI on	
		this pin enabled the H Bridge.	
Aix / Bix	Input	Current Select Bits. An internal 2 bit DAC used to	
		scale down the maximum current that will be	
		allowed through the H Bridge	

Bipolar Microstepper		
MODEx	Input	Selects the degrees of microstepping from full step
		to 32 degrees of microstepping.
DIRECTION	Input	Selects the direction of rotation (CW or CCW
		depending on how the motor is wired)
STEP	Input	A transition from LO to HI tells the device to
		increment one step or microstep as depending on
		DIRECTION and MODEx.
nENABLE	Input	A LO on this pin enables the device. A HI on this
		pin disables the device.
nHOME	Output	An output which goes asserted (LO) when the step
		being produced is the first on the internal lookup
		table.

For More Information:

<u>www.avayanelectronics.com</u> contains all the files pertinent to assembling this board, such as schematic and Bill Of Materials. As of August 2011, Gerbers are no longer provided.

<u>www.eBLDC.com</u> continuously offers treatises on the usage of all Avayan Electronics modules.

www.robot-talk.com is a public forum where users can post their questions.

<u>www.DriverDudes.com</u> carries an assortment of modules in a variety of forms ranging from bare boards to fully assembled modules.

