
AE MegaMotor Manual

AE-MegaMotor:

- Controls either two DC motors (up to 3A), 1 bipolar stepper motor (Up to 3A) or 1 large DC motor (up to 5A).
- Easy access to all signals. Three different combinations documented on the back side.
- Selectable reference voltage to either external access, or internally derivable through a potentiometer.

Ease of Use Features:

- Input power wires and power outputs screwed into terminal block.
- Measures 2.5" by 2.5"
- Dual 16 pin header connector offers easy access to signals. Second header can work of as an access point to a second board or test stakes for in application monitoring.
- All possible combinations tackled by the use of potentiometers and jumpers.

Description:

The AE-MegaMotor is the most flexible motor control module you will ever find. Measuring only 2.5" by 2.5" this module can either drive two DC motors, one bipolar steppers with or without microstepping, or a single DC motor.

The "secret" is a new family of drivers with different functionality but identical pinout, from Texas Instruments, which consists on drivers such as the DRV8812/13/14/24/25/28/29/40/41/42. The different flavors are:

DRV8812 Flavor: Dual H Bridge to control either two DC motors or a bipolar stepper.

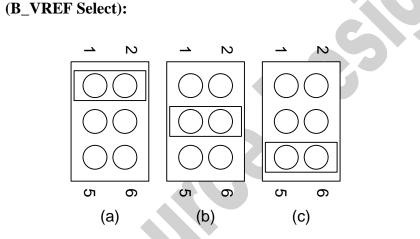
DRV8824 Flavor: Dual H Bridge with internal indexer to microstep a bipolar stepper motor.

DRV8828 Flavor: Single H Bridge with increased current capability for driving DC motors. Two of these can be used to drive larger steppers.

Other than the differences mentioned above, all of these devices offer the exact same features:

- 1. Current control engine to regulate current. Vital for stepper driving and torque control on DC motors.
- 2. Selectable slow, fast or mixed current decay modes.
- 3. Over Current Protection and fault signaling.
- 4. Identical pinout, allowing for completely different devices to be soldered into the very same board!

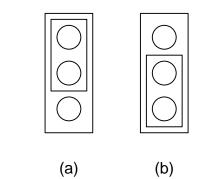
1 2 3	DRV8812/13/14/41	DRV8824/25	DRV8828/29/40/42		
2 3		NO			
3		NC	NC		
	VDD (3.3V)				
	nRESET (input)				
4	nSLEEP (input)				
5	nFAULT (output)				
6	PHASE A	DIRECTION	PHASE		
7	ENABLE A	nENABLE	ENABLE		
8	ENABLE B	STEP	NC		
9	PHASE B	NC	IO		
10	AI 0	MODE0	I1		
11	AI1	MODE1	I2		
12	BI 0	MODE2	I3		
13	BI 1	nHOME (output)	I4		
14	A_VREF				
15	B_VREF				
16	GROUND				


Control Signals and AE-MegaMotor Header pinout:

Jumper Configurations:

Jumpers will allow the configuration of the reference voltage selection. Depending on the device soldered into the AE-MegaMotor module, jumpers must be configured accordingly. Per example, Dual DC variants will most likely require dual VREF analog inputs, while the microstepper and single H Bridge will require a single VREF analog input.

Jumper settings will also control whether the VREF analog input is derived from the provided potentiometer or through the header connections.



JP1 Position	Diagram	VREF B Source
JP1:1-2	(a)	Potentiometer R8
JP1:3-4	(b)	Headers J2 or J3
JP1:5-6	(c)	VREFA

Jumper JP1 (B_VREF Select):

Jumper JP2 (A_VREF Select):

JP2 Position	Diagram	VREF A Source
JP2:1-2	(a)	Potentiometer R9
JP2:2-3	(b)	Headers J2 or J3

Control Signals Description:

Control Signal	Direction	Description			
	All Devices				
VDD	Power	3.3V power supply must be provided on this power rail			
nRESET	Input	Clears the internal logic on the device. If an over current protection has shut down the driver, a low on this pin clears the fault and resumes operation.			
nSLEEP	Input	A LO level on this pin places the device on low power mode.			
nFAULT	Output	Open Collector output which signals if a fault has occurred (Thermal Shutdown, Over Current, etc.)			
VREF	Analog Input	Configures ITrip Max Current according to the equation ITrip = VREF / (5 * RSENSE)			
DECAY	Input	Specifies Current Recirculation Scheme. A LO configures for Slow Decay mode. An OPEN (or NC) configures for Mixed Decay mode. A HI configures for a Fast Decay mode			
	idge Control (DC	motor or Stepper motor winding)			
PHASEx	Input	Selects direction of current flow on the H Bridge driving an inductive load.			
ENABLEx	Input	A LO on this pin disables the H Bridge. A HI on this pin enabled the H Bridge.			
Aix / Bix	Input	Current Select Bits. An internal 2 bit DAC used to scale down the maximum current that will be allowed through the H Bridge			
OPe					

Bipolar Microstepper		
MODEx	Input	Selects the degrees of microstepping from full step
		to 32 degrees of microstepping.
DIRECTION	Input	Selects the direction of rotation (CW or CCW
		depending on how the motor is wired)
STEP	Input	A transition from LO to HI tells the device to
		increment one step or microstep as depending on
		DIRECTION and MODEx.
nENABLE	Input	A LO on this pin enables the device. A HI on this
		pin disables the device.
nHOME	Output	An output which goes asserted (LO) when the step
		being produced is the first on the internal lookup
		table.
Single H Bridge (DC Motor or Stepper motor winding)		
Ix	Input	Current Select Bits. On the single H Bridge flavor,
		these five bits select from one of the 32 possible
		current levels. Use these bits if you want to
		microstep a large stepper motor.
PHASE	Input	Selects direction of current flow on the H Bridge
		driving an inductive load.
ENABLE	Input	A LO on this pin disables the H Bridge. A HI on
		this pin enabled the H Bridge.

